

LE JEÛNE

Ressources énergétiques

Pourquoi une formation commune à tous

4 professions COMPLEMENTAIRES qui s'articulent autour du jeûneur

Coordination -Synchronisation -> Protocoles (Tables rondes , HERMES)
 Langage commun -> Formations

Pourquoi une formation commune à tous

Formation commune à tous les intervenants

Pour établir un socle commun -> Définir le jeûne avec repères communs

Public varié:

- -> professions très différents les unes des autres
- -> horizons et connaissances différents

Connaissances communes Connaissances spécifiques:

- -> à connaitre par les naturopathes
- -> à entendre par les non naturopathes

Sommaire

THEORIE:

Rappels / Physiologie

Les ressources énergétiques:

- Les réserves, pourquoi et comment
- Les formes d'énergies et les besoins énergétiques
- Un peu de biologie cellulaire:
- Mécanismes d'adaptation énergétique
- Les limites du jeûne

PRATIQUE

Faciliter la cétogénèse

Introduction

Définitions

Le jeûne:

Définition initiale: H. SHELTON

« Abstention <u>volontaire</u> de toute nourriture ,solide ou liquide, pendant une durée déterminée, pendant laquelle le corps se nourrit de ses réserves »

5

Introduction

Définitions

Le jeûne:

Selon Dr O. BUCHINGER:

« Abstention <u>volontaire</u> de nourriture **solide** pendant une période déterminée, afin de laisser le corps se régénérer en se nourrissant de l'intérieur »

- -> **Jeûne modifié** : utilisation possible de jus de fruits/légumes, bouillons , miel en petite quantité.
- -> Celui choisi par Jeûne & Bien-être

Introduction

Définitions

Quelques précisions

- > Période post-prandiale: jusqu'à 8h après le repas
- **Période post-absorptive**: de 8h à 16 h après le repas
- > Jeûne: au delà de 16h
 - -> le corps se nourrit alors de ses propres réserves

Introduction

Nous sommes tous jeûneurs

A l'origine:

Variations saisonnières de la quantité de nourriture

Tous descendants d'individus ayant survécus à la pénurie alimentaire

Jeûner

_

Programme de survie inscrit en chacun de nous pour faire face au manque de nourriture

(et non à la surabondance)

Introduction

Nous sommes tous jeûneurs

La nuit = jeûne physiologique

≻entretien de l'organisme:

- -> réparations tissulaires
- -> élimination des toxines

9

Pourquoi jeûner

Jeûner pour:

- > Accélération de l'élimination des toxines
- Une resie tornade
- Pause pour le système digestif:
 digestion = 25 % de nos dépenses énergétiques
- > Stimulation des réparations tissulaires
- Rééquilibrage alimentaire (remise à zéro des compteurs)

Les contre-indications

D'après l'Association Médicale Jeûne et Nutrition , Allemagne.

Absolues:

- Grossesse, allaitement
- > Anorexie mentale
- > Dénutrition extrême, maigreur extrême
- > Athérosclérose cérébrale avancée
- > Hyperthyroidie décompensée
- > Insuffisance rénale ou hépatique sévères.

11

Les contre-indications

D'après l'Association Médicale Jeûne et Nutrition , Allemagne.

Relatives: nécessitent une SURVEILLANCE MEDICALE

- > Diabète insulino-dépendant
- Dépendances (drogues, alcool)
- Pyschoses
- > Décollement de rétine
- Ulcères importants de l'estomac ou du duodénum
- > Affections coronariennes avancées
- > Cancers et scléroses en plaques à un stade avancé
- Épuisement important
- Pathologies avec médications lourdes (augmentation effets des médicaments)

Mécanismes d'adaptation

Arrêt alimentation = STRESS physiologique +++

- => Réactions d'adaptation de l'organisme, en particulier à certains niveaux:
 - > métabolisme énergétique
 - > système neuro-hormonal
 - > équilibre hydro-électrolytique: eau et sels minéraux

13

Physiologie du jeûne

Adaptation automatique Rôle du Système Nerveux Autonome (ou S.N.Neurovégétatif)

SN sympathique

Action Stress

SN parasympathique

Repos

Entretien Réparation

Elimination

Importance de jeûner au calme pour passer en parasympathicotonie

2 phases:

- 1/ Sympathicotonie = état de stress physiologique
 - -> 2 à 3 jours
 - -> Consommation du glucose sanguin, puis du glycogène.
 - -> Néoglucogénèse: synthèse de glucose à partir des protéines musculaires
- 2/ Parasympathicotonie = autolyse = autorestauration.
 - -> à partir du 3° jour
 - -> Utilisation des graisses 111 -> glucose + Corps cétoniques.

Transition parfois laborieuse

15

Physiologie du jeûne

Les réserves

Pour un adulte de 1m70, 70 kg:

-> Glucides: 750 gr

-> Protéines: 3 kg

-> Lipides: 10 kg

Environ 100 000 kcalories / 40 jours de réserves

Mécanismes d'adaptation Au niveau neuro-hormonal

1/Phase sympathique: phase de stress

Adaptation hormonale:

- > Glycémie \ => \ Insuline + \ Glucagon
- ➤ Adrénaline et Cortisol /
- ➤ Hormones thyroidiennes /
- ➤ Hormone de croissance 🥕

Physiologie du jeûne

Mécanismes d'adaptation Au niveau neuro-hormonal

Phase sympathique : phase de stress

Adaptation neurovégétative:

-> / Rythme cardiaque

18

Mécanismes d'adaptation Au niveau neuro-hormonal

2/ Phase parasympathique

Glycémie stabilisée: environ 0,7 g/l

Adaptation hormonale:

Insuline: synthèse minimale

-> Absence de pic d'insuline.

19

Physiologie du jeûne

Mécanismes d'adaptation Au niveau neuro-hormonal

Phase parasympathique Adaptation hormonale:

- > Hormones thyroidiennes
 - => Métabolisme de base \
 - => Diminution des dépenses énergétiques

Mécanismes d'adaptation Au niveau neuro-hormonal

Phase parasympathique **Adaptation hormonale:**

Hormone de croissance

=> mobilisation des lipides +++

Chez la femme: taux x 13

Chez l'homme: taux x 20

Autant d'injustice ca m'défrise

21

Physiologie du jeûne

Mécanismes d'adaptation Au niveau neuro-hormonal

Phase parasympathique Adaptation neurovégétative:

> Rythme cardiaque

> Tension Artérielle

Mécanismes d'adaptation Au niveau neuro-hormonal

Au niveau des neurotransmetteurs:

- > Taux sanguin de sérotonine /
- > Synthèse dopamine
- > Synthèse d'endorphines /

23

Physiologie du jeûne

Mécanismes d'adaptation Au niveau de l'équilibre hydro-électrolytique

Equilibre hydrosodé

- > Utilisation de l'eau infiltrée dans les tissus
- > / Aldostérone par les surrénales
 - => Epargne Na
 - => Epargne hydrique
 - => \ Tension Artérielle

Mécanismes d'adaptation Au niveau de l'équilibre hydro-électrolytique

Sels minéraux (et vitamines)

- > Pas de synthèses digestives
 - -> économie +++ des sels minéraux (et vitamines)
- > / Taux sanguin de zinc

25

Jeûne et santé

Mécanismes généraux

Absence d'alimentation => pas de digestion

25 % d'énergie supplémentaire disponible

pour les travaux de « nettoyage et réparation »

Mécanismes généraux

Autolyse:

Utilisation des réserves

Dégradation des déchets métaboliques accumulés

Dégradations des protéines détériorées

-> meilleure communication intercellulaire

Amélioration globale du fonctionnement de l'organisme

2

Jeûne et santé

Mécanismes d'ordre généraux

Autophagie

Au niveau cellulaire

Elimination des déchets et organites dysfonctionnels:

- -> Elimination des mitochondries usagées
 (=> Renouvellement des mitochondries)
- -> Amélioration du fonctionnement énergétique

Hausse de la vitalité

(Même mécanisme avec le sport)

Mécanismes généraux

Diminution de l'inflammation

Due à:

- Taux d' Insuline
- > / Taux de cortisol
- > / Taux corps cétoniques
- + libération d'endorphines

Diminution des douleurs

Jeûne et santé

Mécanismes généraux

Elimination des surcharges en eau et en Na

Régression des oedèmes

Diminution de la TA

30

Au niveau du système digestif

Repos des organes de la digestion:

V V V Synthèse sucs digestifs

Facilite la cicatrisation des muqueuses digestives

31

Jeûne et santé

Au niveau du système digestif

Repos des organes de la digestion:

- > Pancréas : √ 1/3 de son poids pendant le jeûne selon SHELTON
- ➤ Foie: 1/2 de son poids
 - -> élimination glycogène et eau
 - -> déstockage des graisses (foie gras)

Amélioration fonctionnement

Au niveau du système digestif

Au niveau intestinal:

Absence d'antigènes alimentaires

-> Diminution de la stimulation du système immunitaire

=> Diminution de l'inflammation

33

Jeûne et santé

Au niveau du système digestif

Au niveau intestinal:

Absence d'alimentation

-> normalisation de la flore

Amélioration des troubles intestinaux

Au niveau du système digestif

Au niveau intestinal:

Paroi intestinale = réservoir protéique

-> Remaniement complet

Régénération de la muqueuse intestinale

35

Jeûne et santé

Au niveau des paramètres sanguins

Diminution de la glycémie:

-> régénération des récepteurs à insuline

Amélioration de la tolérance à l'insuline

Utilisation des triglycérides:

Normalisation du bilan lipidique

Au niveau cardivasculaire

Perte de poids au niveau abdominal

- + amélioration sensibilité à l'insuline
- + normalisation bilan lipidique
- + normalisation TA
- -> Prévention du syndrome métabolique

Prévention des risques cardiovasculaires

37

Jeûne et santé

Au niveau du système nerveux

- > \(\) Sérotonine, dopamine et endorphines -> amélioration de l'humeur
- > Corps cétoniques -> euphorisants, clarté intellectuelle
- > Amélioration des organes des sens (odorat....)

Amélioration du fonctionnement psychique

Au niveau immunitaire:

- > Forte diminution des sollicitations alimentaires intestinales
- > En 3 jours: « décrassage » du système immunitaire

Amélioration de l'immunité

39

Jeûne et santé

Le phénomène d'hormèse:

A doses physiologiques, les réactions engendrées par certains facteurs de stress potentiellement nocifs, se révèlent, au final, positives pour l'organisme. (= mécanisme horminique)

C'est le cas du jeûne:

- Nocif si extrême => peut aller jusqu'au décès
- Bénéfique si respect des normes physiologiques:=> amélioration de la santé

Jeûne =

- > mécanisme physiologique naturel fondamental
- > comme le sommeil, la respiration

Outil de prévention et d'amélioration de la santé

Notre rôle n'est pas de guérir

Notre rôle est d'accompagner le jeûne.

Importance de notre discours

41

2e partie

Les ressources énergétiques au cours du jeûne

Les réserves: une nécessité

Dépenses énergétiques permanentes

- -> maintien des fonctions vitales (respiration.....) = métabolisme basal
- -> entretien de l'organisme et nutrition cellulaire continuels
- -> synthèse permanente d'énergie biochimique par les cellules

Alimentation intermittente

-> Réserves nécessaires

Pour maintien en vie

43

Les ressources énergétiques

Capacité à jeûner

Un programme métabolique indispensable pour survivre

La capacité à jeûner est conditionnée par:

- > les **réserves** elles-mêmes
- > la capacité à utiliser ces réserves: Autolyse

Déterminant pour la qualité et la facilité du jeûne

2 formes d'énergie

Energie calorique:

- fournie par les nutriments issus de la digestion: glucose, acides gras, acides aminés
- > pas d'utilisation directe: transformation en énergie biochimique
- surplus stocké dans les réserves pondérales.

Energie biochimique:

- > sous forme de ATP (Adénosine Tri Phosphate)
- > produite par les cellules à partir des nutriments: 50 kg / jour
- produite et utilisée en permanence, au fur et à mesure des besoins
- > ne peut être stockée

Les nutriments servent à fabriquer l'énergie biochimique

45

Les ressources énergétiques

La production d'énergie biochimique

Nutriments (Alimentation, réserves)

énergie non utilisable directement

(oxydation des nutriments = respiration cellulaire)

ATP énergie utilisable immédiatement

Les calories

Energie contenue dans les aliments

Unité internationale de mesure de l'énergie en physique : kJ (kiloJoule)

4,185 J = quantit'e de chaleur nécessaire pour élever 1g d'eau(= 1 ml) de 1° (de 14,5° à 15,5°)

Valeur énergétique d'un aliment :

Valeur calorique = valeur calorifique , en kcalories

= quantité de chaleur dégagée par la combustion de 100 g d'un aliment

1 kcal= chaleur nécessaire pour élever 1kg (=1l) d'eau de 1° (14,5° à 15,5°)

ex: 100 g d'aubergine -> 35 kcal

Confusion fréquente : calories/ Calories.......

1 kcal = 1 Cal (1 grande Calorie)

= 1000 cal (1000 petites calories)

= 4,185 kJ (kilo Joule)

Unité officielle : kcal (= kilocalorie)

47

Les ressources énergétiques

Les calories

Informations nutritionnelles: En moyenne, ces céréales apportent les principaux éléments nutritifs suivants.

Valeurs énergétique et nutritionnelles pour 100 g
Valeur énergétique: 1654 kJ/391 kcal
Protéines: 6,6 g
Glucides: 80,7 g
Lipides: 4,6 g

Les besoins caloriques quotidiens

Besoins quotidiens estimés*:
Variables selon activités et l'état physiologique

➤ Chez l'homme

2 100 kcal à 3 500 kcal

> Chez la femme

1 800 kcal à 2800 kcal

49

Les ressources énergétiques

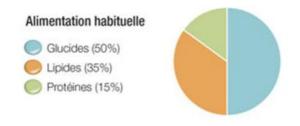
Les besoins caloriques quotidiens

Assurés par l'alimentation quotidienne

Aliments

Digestion

Nutriments


Glucides -> 4 kcal/g Protéines -> 4 kcal/g Lipides -> 9 kcal/g

Utilisation immédiate ou stockage

^{*}sante-medecine.journaldesfemmes.fr/.../108-calories-par-jour-besoins-journaliers

Les besoins caloriques quotidiens

Répartition des apports/alimentation classique

51

Les ressources énergétiques

Les réserves estimées

Pour un adulte de 1m70, 70 kg:

-> Glucides: 750 gr

-> Protéines: 3 kg

-> Lipides: 10 kg

Environ 100 000 kcal / 40 jours de réserves

Les réserves

4 compartiments de réserves

- -> Sang: glucose -> quelques heures
- -> Foie + muscles : glycogène -> glucose -> 36 à 48 h
- -> **Tissu adipeux**: graisses- > triglycérides -> corps cétoniques
- -> **Tissus et cellules**: muscles, protéines détériorées, paroi des cellules usagées..... -> acides aminés

53

Les ressources énergétiques

Les réserves

Utilisation

Glucides (Glucose et glycogène): limités, rapidement utilisés

Protéines: utilisation rapide mais transitoire

Graisses: lenteur dans la mise en route de l'utilisation

- -> très haute valeur calorique
- -> énergie de l'endurance
- -> stocks importants
- -> synthèse et stockage excessifs quand excès de glucides (insuline = hormone du stockage)

Les réserves

Contraintes de stockage:

Glycogène: 3-5g d'eau/g

Protéines: 3-5g d'eau/g

Lipides (triglycérides): 0,1g d'eau/g

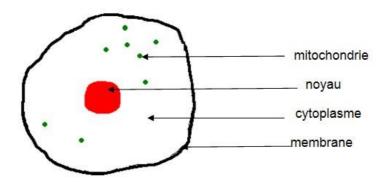
Les lipides sont les plus facile à stocker

Capacité de stockage illimitée

55

Les ressources énergétiques

Les réserves

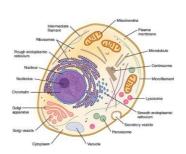

Pas de défense / surabondance

Nous ne sommes **pas programmé pour gérer les excès** alimentaires permanents

Nous sommes **programmé pour l'alternance**Abondance / Restriction
Constitution de réserves / Consommation des réserves

Un peu de biologie cellulaire

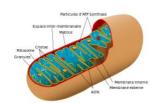
Schéma simplifié d'une cellule


57

Les ressources énergétiques

Un peu de biologie cellulaire

Nos cellules: 10 (10 000 milliards)



Un peu de biologie cellulaire

Les mitochondries: organites producteurs d'énergie

Présentes dans la majorité des cellules Véritables centrales énergétiques

50

Les ressources énergétiques

Un peu de biologie cellulaire

Les mitochondries: organites producteurs d'énergie

Présentes dans la majorité des cellules

Hépatocytes, cellules musculaires: >2000 / cellules

-> production et consommation d'énergie +++

Plaquettes: très peu de mitochondries

Hématies: absence totale de mitochondries

-> pas de centrale énergétique

Un peu de biologie cellulaire

Les substrats énergétiques

Production d'énergie à partir de différentes molécules:

- ➢ Glucose
- > Acides aminés
- > Acides gras
- > Corps cétoniques
- ➤ Divers (Lactate....)

61

Les ressources énergétiques

Un peu de biologie cellulaire Les substrats énergétiques

Le glucose

Glycémie = 0,8 à 1,2 g/l, constante physiologique

- accessible rapidement (sang, réserves de glycogène)
- utilisable par toutes les cellules

Carburant privilégié par toutes les cellules quand il est majoritaire

Un peu de biologie cellulaire

La production d'énergie biochimique Respiration cellulaire

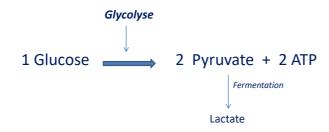
Dans toutes les cellules, au niveau du cytoplasme: glycolyse

Glucose -> Pyruvate + un peu d'énergie

Dans les mitochondries: respiration mitochondriale

Pyruvate -> Eau + Gaz carbonique + ENERGIE

Mitochondries = « usines » de production d'énergie


63

Les ressources énergétiques

Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

Dans le cytoplasme cellulaire: glycolyse (anaérobie)

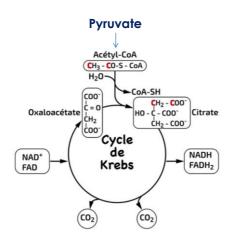
Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

Dans les mitochondries: respiration mitochondriale (aérobie)

(cycle de Krebs + chaine respiratoire + phosphorylation oxydative)

Respiration mitochondriale


65

Les ressources énergétiques

Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

Dans les mitochondries: cycle de Krebs, pilier central

Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

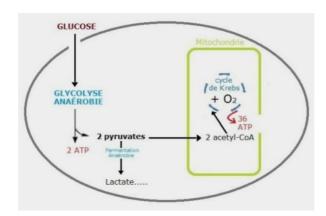
Dans le cytoplasme cellulaire: glycolyse (anaérobie)

1 Glucose -> 2 Pyruvate + 2 ATP + chaleur

Dans les mitochondries: respiration mitochondiale (aérobie)

Pyruvate

AcetylCoA -> H2O(eau) + CO2 (gaz carbonique) + 36 ATP + chaleur


Bilan total: C6H12O6 + 6 O2 -> 6 H2O + 6 CO2 + 38 ATP + chaleur

67

Les ressources énergétiques

Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

Un peu de biologie cellulaire

La production d'énergie biochimique à partir du glucose

Glucose: énergie stockée, non utilisable en l'état

Transformation dans les cellules

ATP: énergie utilisable immédiatement

1 ATP -> 30 kJ = 238,9 kcal

69

Les ressources énergétiques

Un peu de biologie cellulaire

Peut-on vivre en l'absence totale de glucose?

NON

Certaines cellules sont gluco-dépendantes

- -> totalement ou partiellement
- -> pas ou peu de capacité d'adaptation

Nécessité d'un apport de glucose exogène et/ou d'une synthèse endogène

Un peu de biologie cellulaire

Peut-on vivre en l'absence totale de glucose?

Cellules glucodépendantes

- Hématies: absence totale de mitochondries
 -> strictement glucodépendantes
- Plaquettes (peu de mitochondries)
- Certaines zones du cerveau

Difficultés d'adaptation au changement de carburant ? Variabilité selon les individus ???

- > rétine ? Tissus transparents de l'oeil ?
- > médullo-surrénales ?
- > Médullaire rénale ?
- Moelle osseuse ?
- ➤ Globules blancs?

71

Les ressources énergétiques

Mécanismes d'adaptation au cours du jeûne

Arrêt de l'apport externe d'alimentation

Diminution de la glycémie

Autolyse

Réactions d'adaptation

Ressources énergétiques

Passage d'une alimentation externe à une alimentation interne

Autolyse:

Tout ce qui est utilisable va servir de combustible

-> utilisations des réserves

Autophagie

-> nettoyage cellulaire

Préservation des organes essentiels

(cerveau, cœur, poumons...)

73

Physiologie du jeûne

Nettoyage au niveau cellulaire:

Autophagie:

Action des lysosomes au sein du cytoplasme:

- > consommation des déchets issus du métabolisme cellulaire
- dégradation et recyclage des organites détériorés, en particulier les mitochondries

Mécanismes d'adaptation énergétique au cours du jeûne

Stratégie générale d'adaptation:

- > Diminution des dépenses
- > Diminution de la consommation de glucose
- Mobilisation et utilisation des réserves lipidiques
- > Economie des protéines musculaires

Economies d'énergie

75

Les ressources énergétiques

Mécanismes d'adaptation énergétique

Stratégie générale d'adaptation:

Diminution des dépenses:

métabolisme basal

production de chaleur

diminution des récepteurs cellulaires du glucose -> diminution de son utilisation

Mécanismes d'adaptation

Diminution des besoins en glucose

Glucose:

- -> besoins habituels estimés = 220 g / jour
- -> au cours du jeûne : 🛂 🔻 80 g /jour

Réservé essentiellement aux cellules glucodépendantes

77

Physiologie du jeûne

Mécanismes d'adaptation

Diminution des besoins en glucose

Cerveau: grand amateur de glucose -> 120 g /jour

Utilisation progressive des corps cétoniques

Besoin en glucose \(\square 40 \, g \end{array} jour \)

Physiologie du jeûne

Mécanismes d'adaptation

Diminution des besoins en glucose

Tableau II. Évolution de la consommation de glucose au cours du jeûne

The same and the s			
Tissus		durée du jeûne	
	12 h	8 j	40 j
Cerveau	120	45	22
Muscle	30	5	5
Rein	30	5	5
Sang	34	34	34
Total	214	89	66

- © Université Médicale Virtuelle Francophone -

79

Physiologie du jeûne

Mécanismes d'adaptation

Utilisation des réserves

3 phases:

1° Utilisation des réserves de glucose

2° Utilisation des réserves protéiques

3° Utilisation des réserves lipidiques

Mécanismes d'adaptation

Utilisation des réserves de glucose

Au niveau du sang

Consommation du glucose sanguin quelques heures

- -> diminution de la glycémie < 0,8 g/l
 - -> synthèse d'insuline

-> synthèse de glucagon /

81

Les ressources énergétiques

Mécanismes d'adaptation

Utilisation des réserves de glucose

Au niveau du foie et des muscles

Glycogénolyse: libération des réserves de glucose. 36 à 48h

Mécanismes d'adaptation

Utilisation des réserves de glucose

Au niveau du foie et des muscles

Glycogénolyse: glycogène -> glucose

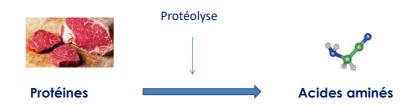
Muscles:

-> utilisation locale par le muscle lui-même

Foie:

-> utilisation systémique: libéré dans le sang grâce à une enzyme, la glucose-6-phosphatase.

83

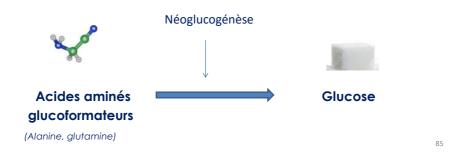

Les ressources énergétiques

Mécanismes d'adaptation

Utilisation des réserves protéiques

Au niveau des muscles:

Protéolyse des protéines musculaires: acides aminés libérés dans le sang



Mécanismes d'adaptation

Utilisation des réserves protéiques

Au niveau du foie:

Néoglucogénèse : acides aminés -> glucose, libéré dans le sang

Les ressources énergétiques

Mécanismes d'adaptation

Utilisation des réserves protéiques

Protéolyse musculaire:

Limitée car nécessité de préserver la masse musculaire

Intense les 1° jours : phase de transition

> pour faire face au déficit en glucose

Diminue par la suite grâce à:

▶ l'intensification de la lipolyse

▶l'intensification de la cétogénèse

Mécanismes d'adaptation

Utilisation des réserves de lipides

Au niveau du tissu adipeux Lipolyse:

Triglycérides -> 3 Acides gras + 1 glycérol

AG et glycérol sont libérés dans le sang

87

Les ressources énergétiques

Mécanismes d'adaptation

Adaptation énergétique progressive

Utilisation du glycérol

Au niveau du foie: néoglucogénèse

Glycérol -> Glucose

Synthèse d'une petite quantité de glucose

- -> libéré dans le sang
- -> utilisé en priorité par les cellules glucodépendantes

Mécanismes d'adaptation

Adaptation énergétique progressive

Utilisation des Acides Gras:

- > directement par la plupart des cellules
- > transformés par le foie en corps cétoniques

Cétogénèse

Corps cétoniques = carburant essentiel du jeûne

Bilan/ glucose: à poids égal, rendement supérieur de 40 %

89

Les ressources énergétiques

Mécanismes d'adaptation

Adaptation énergétique progressive

Utilisation des Acides Gras

Dans les mitochondries -> AcetylCoA

Exception au niveau cérébral: les AG ne passent pas la barrière hémato-méningée

- > cycle Krebs...
- Cétogénèse hépatique +++ jusqu'à 185 g/jour
- > Faible cétogénèse niveau rénal et astrocytes

Mécanismes d'adaptation

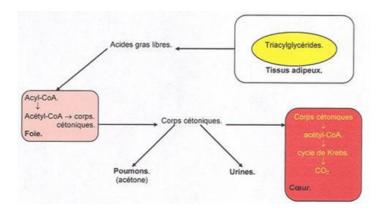
Adaptation énergétique progressive

Utilisation des Corps Cétoniques (CC)

acéto-acétate, beta-hydroxyacétate, acétone

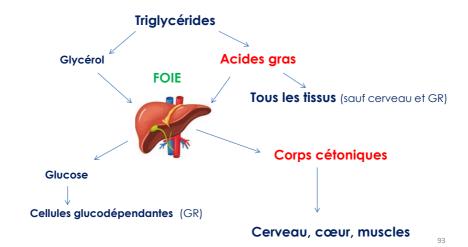
- > Libérés dans le sang
- > Passent la barrière hémato-méningée
- Utilisés dans les mitochondries:

CC -> AcetylCoA -> cycle de Krebs


91

Haleine

Les ressources énergétiques


Mécanismes d'adaptation

Adaptation énergétique progressive

Mécanismes d'adaptation

Adaptation énergétique progressive

Les ressources énergétiques

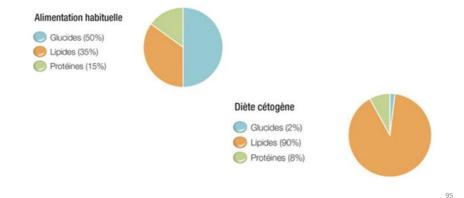
Mécanismes d'adaptation

Pendant le jeûne l'énergie est issue :

- ➤ à 96 % à partir des graisses
- → à 4% à partir des protéines

Jeûne

Changement de substrat énergétique


=

Défi métabolique

La transition énergétique : « Inversion» des carburants

Régime cétogène, Fast Mimicking Diet

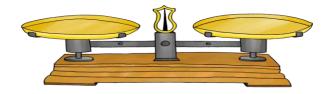
Une transition comparable à celle du jeûne

Les ressources énergétiques

Transition énergétique

2 programmes énergétiques

Changement automatique et progressif



Alimentation

Digestion/nutriments Glucose Stockage: insuline

Jeûne

Nutrition/réserves Acides gras/Corps cétoniques Déstockage : glucagon /

Mécanismes d'adaptation

Adaptation énergétique

Economie des protéines

Glycémie + Cétogénèse

=> Epargne protéique

Mécanisme fondamental de l'adaptation au jeûne (encore mal connu)

97

Les ressources énergétiques

Limites de l'adaptation au jeûne

Seuils limite de consommation:

50 % des protéines corporelles

οu

80% des graisses corporelles

Part incompressible de protéines (50 %) et de lipides (20 %) pour rester en vie

Epargne protéique

Maintenue jusqu'à ce que 80 % des graisses soient utilisées

> Au delà: signaux d'alerte -> retour de la faim

taux plasmatiques AG et corps cétoniques

Décès quand 50 % des protéines sont consommées.

⇔ IMC = 12 - 13

99

Les ressources énergétiques

Limites de l'adaptation au jeûne

Anticipation / taux critique de protéines de 50 %

Travaux de Yvon Le Maho

(études/ manchot empereur, ours, écureuil...)

Signaux d'alerte / seuil minimal Mécanismes induisant la faim et la reprise (Hypothalamus: neuropeptide Y)

Aucun animal ne meurt par reprise trop tardive

Chez l'humain: « ...il jeûna 40 jours puis il eu faim... »

Le cas particulier des cellules cancéreuses

Dr Warbug, prix nobel de médecine 1931

Consommation +++ de glucose pour multiplication rapide

- ne savent plus jeûner:
 pas d'utilisation des cc
 Incapacité à s'adapter au manque de glucose
- -> fragilisées par le jeûne

Jeûne = cauchemar pour la plupart des cellules cancéreuses

101

Les ressources énergétiques

Quelques éléments pour une bonne adaptation au jeûne

Importance de:

- > la qualité des graisses de réserve
- > la fluidité des membranes cellulaires et mitochondriales
- > l'état fonctionnel des mitochondries

Nutriments nécessaires: AGE, L-carnithine, Mg, vitamines B, Fe...

Pour être bien nourri pendant le jeûne bien s'alimenter avant!

Pourquoi mobiliser régulièrement nos réserves

- Disparition des périodes naturelles de restriction alimentaire
- ➤ Nourriture industrielle
- ➤ Surabondance de nourriture et de toxines

Nourriture = 500 kg / an / personne A 40 ans = 20 tonnes / personne

- -> renouvellement /nettoyage des graisses de réserves
- -> renouvellement des mitochondries/vitalité
- -> retrouver nos performances / jeûne (souvent amoindries)

Adaptabilité métabolique

103

La conduite du jeûne / Ressources énergétiques

Moduler et accompagner les réactions.

Quoi?
On est que mardi?

Pffffff...C'est encore loin le week-end?

Le jeûne doit rester confortable

Synthèse corps cétoniques +++:

- Taux sanguin (= cétonémie)
- > Apparition dans les urines (= cétonurie)

Passage en cétose = Crise d'acidose

-> désagréments fréquents

105

Les ressources énergétiques

Passage en cétose

Synthèse corps cétoniques +++:

➤ Cétonémie / / /

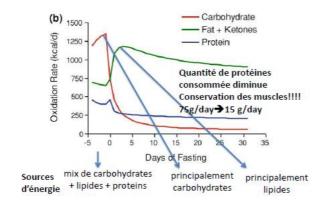
de 0,1 mmol/l à 6 mmol/l

Apparition dans les urines (= cétonurie)

+ ou ++ selon hydratation

Passage en cétose

Correspondance sang/urines: +/- approximative selon hydratation


Cétonémie (sang)	Cétonurie (urines)	
<0.3 mmol/l	0	
0.3 à 0.6 mmol/l	traces	
0.6 à 1 mmol/l	+	
1 à 3 mmol/l	++	
>3 mmol/l	+++	

www.endocrino.chu-besancon.fr

107

Les ressources énergétique

Passage en cétose: passage parfois un peu laborieux

Jeûne symposium_gastro-enterologiemici_fev2016_mottet

La conduite du jeûne

Accompagner le passage en cétose

Apports hydriques

Pas d'apport d'eau par les aliments

Mise en place de la cétogénèse: nécessite beaucoup d'eau

+ Elimination des toxines

Les 1° jours: 2 à 3 litres / jour

Eau principalement+ éventuellement tisanes et jus de fruits dilués en petites quantités

109

La conduite du jeûne

Accompagner le passage en cétose

Apport de sucre en petite quantité: jusqu'à 50 g / jour

Favorise le passage en phase 2 et la cétogénèse

- Observations de CAHILL (Thèse de médecine de LEMAR Jérome, 2011)
 GAMBLE, 1947: Apport de glucose => diminution de la protéolyse.
 HOFFER: épargne protéique liée aux glucides, pendant les 10 1° jours de jeûne.
 - -> jus de fruits / légumes du matin
 - -> miel
 - -> jus de fruit dilué
 - -> potage, dans une moindre mesure

Apport d'énergie extérieure -> diminue les désagréments

La conduite du jeûne

Accompagner le passage en cétose

Les différents niveaux de jeûne

Jeûne hydrique

+ 3 niveaux 1,2, et 3

Ajout de sel de table si hypotension ou nausées persistantes 2 à 3 grammes / jour (= 2 à 3 pincées)

Selon état des stagiaires Réévaluation quotidienne et permanente

(Table ronde n° 2)

111

La conduite du jeûne

Faciliter la cétogénèse

Favoriser la détente

Suractivité => / Besoins d'énergie L'organisme ne peut pas encore faire face à ces besoins

Activité modérée:

- Le matin: de 8h30 à 9h30 Séance d'EMC (Eveil Matinal Corporel) = « mise en route »
- Marche douce: de 10h à 14h

La conduite du jeûne

Organisation d'une journée/ protocoles

Protocoles: cf HERMES (Table ronde n° 4)

Mise en place de la feuille de suivi personnalisé 🥚

Niveaux de jeûne Gestion des stagiaires

Anticipation -> Table ronde n°2

113

La conduite du jeûne

Organisation d'une journée/ protocoles

Importance:

- -> de la répartition des tâches
- -> du respect des horaires
- -> de la coordination et des transmissions au sein de l'équipe

Savoir travailler ensemble!

(Table ronde n°1)

Conclusion

Cadre défini pour:

- > Permettre aux jeûneurs de jeûner en toute tranquillité grâce à un **encadrement professionnel**.
- > Anticiper et adapter le jeûne à chacun en fonction de ses capacités et de son état

Faciliter la transition énergétique imposée par le jeûne

115

Documentation

Documentation

- Rapport de l'INSERM 10/01/2014:
- « Evaluation de l'efficacité de la pratique du jeûne comme pratique à visée préventive ou thérapeutique »
- Thèse de médecine de Jérôme LEMAR 2011, Faculté de médecine de Grenoble.
- « L'appellation « jeûne thérapeutique » est-elle fondée ou usurpée ? Eléments de réponse d'après une revue de bibliographie chez l'animal et chez l'homme. »

117

Documentation

- Revue Sport et Vie n° 150 Mai-Juin 2015
- Revue Kousmine n°4 Décembre 2017
- https://rnbio.upmc.fr/Biochimie_metabolisme_cpceto1
- https://cell.sio2.be/mitochondrie/7.php
- https://fr.wikipedia.org/wiki/Glycogénolyse
- Jeûne symposium_gastro-enterologiemici_fev2016_mottet
- https://fr.wikipedia.org/wiki/Cycle_de_Krebs
- <u>www.jeune-therapeutique.fr</u> Dr vétérinaire Frédéric HEBRAUD
- univ.ency-education.com/uploads/1/3/1/.../biochimie2anintegration_metabolique.pdf
- <u>Utilisation des substrats énergétiques</u>
 campus.cerimes.fr/nutrition/enseignement/nutrition_7/site/html/cours.pdf